RAJAGIRI SCHOOL OF ENGINEERING \& TECHNOLOGY
 (AUTONOMOUS)

SECOND SEMESTER B.TECH DEGREE EXAMINATION, AUGUST/SEPTEMBER 2021

Course Code: 100908 /MA 200A
Course name: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND
TRANSFORMS

Max. Marks: 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Is the vector \boldsymbol{r} where $\boldsymbol{r}=x \boldsymbol{i}+y \mathbf{j}+z \boldsymbol{k}$ conservative. Justify your answer.
2. State Greens theorem including all the required hypotheses.
3. What is the outward flux of $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=x i+y j+z \boldsymbol{k}$ across any unit cube.
4. What is the relationship between Green's theorem and Stokes theorem?
5. Solve $y^{\prime \prime}+4 y^{\prime}+2.5 y=0$.
6. Does the function $y=C_{1} \cos x+C_{2} \sin x$ form a solution of $y "+y=0$?. Is it the general solution? Justify your answer.
7. Find the Laplace transform of $e^{-t} \sinh 4 t$.
8. Find the Laplace inverse transform of $F(s)=\frac{2 s}{s^{2}+2}$.
9. Find the Fourier transform of $f(x)=e^{-x}$.
10. State the convolution theorem for Fourier transform.

PART B

(Answer one full question from each module. Each full question carries $\mathbf{1 4}$ marks)

MODULE 1

a) Prove that the force field $\boldsymbol{F}=e^{y} \boldsymbol{i}+x e^{y} \boldsymbol{j}$ is conservative in the entire xyPlane.
b) Use Greens theorem to find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
a) Find the divergence of the vector field $F=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$.
b) Find the work done by the force field $(x, y, z)=x y i+y z j+x z k$ along C where C is the curver $(t)=t i+t^{2} j+t^{3} \boldsymbol{k}$.

MODULE II

a) Solve $y^{3 \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=30 e^{-s}$ given $(0)=3, y^{\prime}(0)=-3, y^{\prime \prime}(0)=-47$.
b) Using method of variation of parameters, solve $y^{\prime \prime}+y=\sec x$.

MODULE IV

a) Use divergence theorem to find the volume of the cylindrical solid bounded by $x^{2}+$ $4 x+y^{2}=7, z=-1, z=4$, given the vector field $\boldsymbol{F}=\boldsymbol{x i}+\boldsymbol{y} j+z k$ across surface of the cylinder.
b) Use Stokes theorem to evaluate $\boldsymbol{\int} \boldsymbol{F} . \boldsymbol{d r}$ where $\boldsymbol{F}=x^{2} i+3 x j-y^{3} \boldsymbol{k}$ where C is the circle $x^{2}+y^{2}=1$ in the $x y$-plane with counterclockwise orientation looking down the positive z-axis.

MODULE III

a) Solve $y^{\prime \prime}+4 y^{\prime}+4 y=x^{2}+e^{-s} \cos x$.
b) Solve $y^{33}-3 y^{\prime \prime}+3 y^{\prime}-y=e^{\mathrm{s}}-x-1$.

$$
-1-1+2
$$

b) Using med

17 a) Find the inverse Laplace form of $F(s)=\frac{3 s+7}{s^{2}+2 s+9}$.
b) Solve the differential equation $y^{\prime \prime}+16 y=4 \delta(t-3 \pi) ; y(0)=2, y^{\prime}(0)=0$ using Laplace transform.
a) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=(t)$ where $f(t)=1$ for $0<t<1$ and $f(t)=1$ for $t>1$ using Laplace transform.
b) Apply convolution theorem to find the Laplace inverse transform of

$$
F(s)=\frac{s^{2}}{s^{2}+6 s+9} .
$$

MODULE V

a) Find the Fourier cosine integral representation for $f(x)=e^{-\mathrm{ks}}$ for $x>0$ and $\mathrm{k}>0$.
b) Does the Fourier sine transform $(x)=x^{-1} \sin x$ for $0<x<\infty$ exist? Justify your answer.
a) Find the Fourier transform of $f(x)=|x|$ for $|x|<1$ and $f(x)=0$ otherwise.
b) Find the Fourier cosine transform of $(x)=e^{- \text {as }}$ for $\mathrm{a}>0$.

