Model Question Paper

Reg No:

Name:

RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) SECOND SEMESTER B.TECH DEGREE EXAMINATION, AUGUST/SEPTEMBER 2021 Course Code:100908 /MA 200A Course name: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

Max. Marks: 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Is the vector \mathbf{r} where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ conservative. Justify your answer.
- 2. State Greens theorem including all the required hypotheses.
- 3. What is the outward flux of (x, y, z) = xi + yj + zk across any unit cube.
- 4. What is the relationship between Green's theorem and Stokes theorem?
- 5. Solve y'' + 4y' + 2.5y = 0.
- 6. Does the function $y = c_1 \cos x + c_2 \sin x$ form a solution of y'' + y = 0?. Is it the general solution? Justify your answer.
- 7. Find the Laplace transform of $e^{-t} \sinh 4t$.
- 8. Find the Laplace inverse transform of $F(s) = \frac{2s}{s^2+2}$.
- ^{9.} Find the Fourier transform of $f(x) = e^{-x}$.
- 10. State the convolution theorem for Fourier transform.

PART B

(Answer one full question from each module. Each full question carries 14 marks) MODULE 1

- 11 a) Prove that the force field $\mathbf{F} = e^{y}\mathbf{i} + xe^{y}\mathbf{j}$ is conservative in the entire xy-Plane.
 - b) Use Greens theorem to find the area enclosed by the effipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

12 a) Find the divergence of the vector field F = xi + yj + zk.

b) Find the work done by the force field (x, y, z) = xyi + yzj + xzk along C where C is the curver $(t) = ti + t^2j + t^3k$.

MODULE II

13 a) Use divergence theorem to find the outward flux of the vector field $F = 2xi + 3yj + z^3k$ across the unit cube bounded by or x = 0, y = 0, z = 0, x = 1, y = 1, z = 1.

- b) Find the circulation of F = (x z)i + (y x)j + (z xy)k using Stokes theorem around the triangle with vertices A(1,0,0), B(0,2,0) and C(0,0,1).
- 14 a) Use divergence theorem to find the volume of the cylindrical solid bounded by $x^2 + 4x + y^2 = 7$, z = -1, z = 4, given the vector field F = xi + yj + zk across surface of the cylinder.

b) Use Stokes theorem to evaluate $\int F dr$ where $F = x^2i + 3xj - y^3k$ where C is the circle $x^2 + y^2 = 1$ in the xy-plane with counterclockwise orientation looking down the positive z-axis.

MODULE III

15 a) Solve
$$y'' + 4y' + 4y = x^2 + e^{-s} \cos x$$
.

b) Solve $y'' - 3y'' + 3y' - y = e^{s} - x - 1$.

16 a) Solve $y^{"} + 3y' + 3y' + y = 30e^{-s}$ given (0) = 3, y'(0) = -3, y''(0) = -47.

b) Using method of variation of parameters, solve y'' + y = sec x.

MODULE IV

17 a) Find the inverse Laplace form of
$$F(s) = \frac{3s+7}{s^2+2s+9}$$
.

b) Solve the differential equation $y'' + 16y = 4\delta(t - 3\pi); y(0) = 2, y'(0) = 0$

using Laplace transform.

18 a) Solve
$$y'' + 3y' + 2y = (t)$$
 where $f(t) = 1$ for $0 < t < 1$ and $f(t) = 1$

for t > 1 using Laplace transform.

b) Apply convolution theorem to find the Laplace inverse transform of

$$F(s) = \frac{s^2}{s^2 + 6s + 9}.$$

MODULE V

- a) Find the Fourier cosine integral representation for f(x) = e^{-ks} for x > 0 and k>0.
 b) Does the Fourier sine transform (x) = x⁻¹ sin x for 0 < x < ∞ exist? Justify your answer.
- a) Find the Fourier transform of f(x) = |x| for |x| < 1 and f(x) = 0 otherwise.

b) Find the Fourier cosine transform of $(x) = e^{-as}$ for a > 0.